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Abstract

In this paper, explicit Model Predictive Control(MPC) is employed for automated lane-keep-

ing systems. MPC has been regarded as the key to handle such constrained systems. How-

ever, the massive computational complexity of MPC, which employs online optimization,

has been a major drawback that limits the range of its target application to relatively small

and/or slow problems. Explicit MPC can reduce this computational burden using a multi-

parametric quadratic programming technique(mp-QP). The control objective is to derive an

optimal front steering wheel angle at each sampling time so that autonomous vehicles travel

along desired paths, including straight, circular, and clothoid parts, at high entry speeds. In

terms of the design of the proposed controller, a method of choosing weighting matrices in

an optimization problem and the range of horizons for path-following control are described

through simulations. For the verification of the proposed controller, simulation results

obtained using other control methods such as MPC, Linear-Quadratic Regulator(LQR), and

driver model are employed, and CarSim, which reflects the features of a vehicle more realis-

tically than MATLAB/Simulink, is used for reliable demonstration.

Introduction

In recent years, model predictive control(MPC) has become the standard optimization method

for complex constrained systems because it can cope with such constraints and predict future

events of a system. At each sampling time, an MPC controller solves an open-loop optimal

control problem to obtain a sequence of optimal vectors, and this calculation is repeated at the

next sampling time over a shifted horizon. Then, only the first input vector of the optimal

input vectors is selected as the control action to the system, whereas the other optimal vectors

are discarded.

Owing to its good performance in deriving an optimal control action fulfilling such com-

plex constraints, MPC has been widely used in the automotive industry [1]. For example, in

[2], MPC has been employed for vehicle yaw stability, where the constraint of yaw moments is

caused by applying braking force to the wheels. Through simulations, it has been demon-

strated that the proposed controller, which is designed based on an MPC scheme, can follow
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the desired reference values of yaw rate while fulfilling the constraints. Moreover, in [3], MPC

has been applied to vehicle stabilization. In [3], state boundaries of the vehicle were defined to

ensure that the vehicle motion remained within a stable region. The constraints indicate the

physical limitations of the vehicle, e.g., the angular limit of handling and slip angle; moreover,

the efficacy of the proposed controller in fulfilling the constraints has been demonstrated.

MPC has been employed in [4] to stabilize an autonomous vehicle, and its capability has been

demonstrated in a wind rejection scenario. In addition, linear-time varying MPC(LTV-MPC)

and nonlinear MPC(NMPC) have been employed in autonomous vehicles in [5]. Furthermore,

in [6], MPC has been applied for energy-saving vehicle to improve car-following fuel

economy.

However, despite the aforementioned advantages of MPC, its huge computational complex-

ity, which is caused by online optimization at each sampling time, is a huge drawback and lim-

its its range of target applications to relatively small and/or slow systems. To overcome this

limitation, a novel approach based on an MPC scheme that moves all the computational efforts

offline has been proposed in [7], and this method is called explicit MPC.

In the explicit MPC scheme, a state vector is treated as a vector of parameters using a multi-

parametric quadratic programming(mp-QP) technique. In this technique, a region contiaining

a unique sequence of MPC feedback laws is presented as a piecewise affine function of the

state, referred to as a critical region, and the controller explicitly selects one of these regions

according to the state condition. It has been proved in [7] that explicit MPC can reduce the

computational burden of MPC while preserving its performance.

In [8], explicit MPC has been applied to DC-DC switched-mode power supplies, and it has

been demonstrated that explicit MPC shows adequate efficiency for use in industrial micro-

controllers because it reduces the online computation power requirment. Moreover, this strat-

egy has been employed to develope a robust MPC scheme in [9]. The mp-QP technique has

been applied successfully for implementing MPC controllers, and it has been shown that the

explicitly obtained control law ensures robust handling. This technique has also been used in

active front steering(AFS) systems. In [10], because all optimization solutions were calculated

offline using the mp-QP technique, the proposed MPC controller could execute at a high rate

in an electronic control unit(ECU).

In this paper, explicit MPC is applied to the path-following control to be analyzed. In the

past few decades, interest in path-following control for autonomous vehicles has increased sig-

nificantly [11–16]. In the path-following maneuver, a vehicle is supposed to follow a desired

path by minimizing deviations from the path. The controller steers the vehicle’s orientation to

drive it along the path with an assumed constant longitudinal vehicle speed. In [11], a nested

proportional integral differential(PID) steering controller has been designed for vision-based

autonomous vehicles, where the look-ahead point for calculating the desired motion of a vehi-

cle was determined by a vision system. PID control has been applied to obtain an optimal yaw

rate, which served as the control input, and PI control has been used for controlling the AFS

system. Moreover, for path-following in autonomous vehicles, a new MPC structure consider-

ing both kinematic and dynamic control has been proposed in [12]. The structure was of the

cascade type, and at the kinematic level, the controller has been defined to reduce computa-

tional complexity and provide set points for the controller at the dynamic level. Furthermore,

path-following control has been applied to tractor trailers [13]. In [13], a linear parameter-

varying(LPV) controller has been designed to be dependent on longitudinal velocity, which

varies according to the driving condition. In [14], the desired path was a type of double lane

change and MPC-based approaches has been employed for predictive active steering control.

A nonlinear vehicle model and the Pacejka tire model has been used to design a nonlinear

MPC(NMPC) controller and a linear time-varying MPC(LTV-MPC) controller. Reduction in
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the computational complexity of NMPC and the robustness of LTV-MPC has been addressed

in [14]. Path-following control has also been applied for a fully actuated marine surface vessel

[15]. In [15], an integral terminal sliding mode based composite nonlinear feedback technique

has been employed for a path following maneuver and demonstrated the tracking performance

and the robustness of the proposed controller.

Moreover, in recent years, interest in path-following control for underactuated autono-

mous vehicles, which comprise systems with control inputs fewer than the number of degrees

of freedom, has increased significantly. For example, in [16], a hybrid controller combining

adaptive switching supervisory control with a nonlinear Lyapunov-based tracking control law

has been proposed for path-following control of hover crafts and underwater vehicles. The

concept of explicit MPC has been applied to yaw stabilization, leading to a demonstrable

reduction in computational burden; this means that the proposed controller can be imple-

mented in real time [17]. The main contribution of this paper is an analysis of explicit MPC

from the veiwpoint of for path-following control so that this MPC-based control method can

be more widely employed for not only automotive systems but also other smaller and/or faster

systems. Moreover, by demonstrating the reduction of the computational complexcity of

MPC, an explicit MPC controller can be designed on different types of devices from micro

controller units(MCUs). Fig 1 shows a desired path comprising of a straight part, a curve, and

a clothoid part. The curvature of the curve is constant, whereas the curvature of the clothoid

part decreases linearly [18]. The vehicle model parameters refer to a vehicle model in CarSim

(C-Class Hatchback 2017). For the analysis of the proposed controller, the weighting matrices,

the prediction horizon, and the control horizon in the MPC optimization problem are varied,

and the constant longitudinal velocity of the vehicle is changed. In addition, other optimiza-

tion controllers such as the linear-quadratic regulator(LQR) and a controller applying the

basic MPC concept are designed for comparing their performances with that of the proposed

Fig 1. Desired path. Desired path for path-following control is plotted in this figure. This path comprises of four parts:

a straight part, two curves, and a clothoid part. The straight part is used to prove the fulfilment of the proposed

controller in this paper by setting the starting point, which is deviated from the desired path. By using the two curves

and the clothoid part, the ability of the controller to perform path-following control will be demonstrated.

https://doi.org/10.1371/journal.pone.0194110.g001
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controller. Through simulations using MATALB/Simulink and CarSim, we demonstrate the

ability of the proposed controller to fulfill such constraints while tracking the desired path.

Vehicle model

In this section, the dynamics and the state-space representation of a vehicle model and the def-

inition of vehicle parameters are presented.

Table 1 lists and quantifies the parameters of the path-following model for a vehicle model

in CarSim(C-Class Hatchback 2017). Among these parameters, the front and the rear tire cor-

nering stiffness values, Cf and Cr, respectively, are not defined explicitly in CarSim because

they vary according to tire slip angle. To use these values in a linear time-invariant system, the

relationship between the lateral tire force Fy and the tire slip angle α, where Fy is a function of

α, is used. Fig 2A shows a graph that can be used to calculate cornering tire stiffness, which is

the initial slope of the graph. The tire model is 215/55 R17, and the slip ratio is 0.85. When the

tire load is 3187.16 N, considering a vehicle mass of 1270 kg, the initial slope of the graph, plot-

ted as a red line, is 967 N/deg or 55405 N/rad, as shown in Fig 2B. In this paper, it is assumed

that the front and the rear tire stiffness values are the same.

For path-following control, it is useful to set position and orientation errors as state variables.

Accordingly, a dynamic model for path-following control can be expressed as follows [19]:

m€e1ðtÞ ¼ _e1ðtÞ �
2Cf þ 2Cr

Vx

� �

þ e2ðtÞð2Cf þ 2CrÞ � _e2ðtÞ
2aCf � 2bCr

Vx

� �

� _cdesðtÞ
2aCf � 2bCr

Vx

� �

þ 2Cf dðtÞ þmgsinð�ðtÞÞ

and

Izz€e2ðtÞ ¼ 2aCf dðtÞ � _e1ðtÞ
2aCf � 2bCr

Vx

� �

þ e2ðtÞð2aCf � 2bCrÞ

� _e2ðtÞ
2a2Cf þ 2b2Cr

Vx
� Izz € desðtÞ � _cdesðtÞ

2a2Cf þ 2b2Cr

Vx

� �

;

ð1Þ

where e1(t), e2(t), δ(t), and sin(ϕ(t)) represent the lateral deviation of the mass center of the vehi-

cle from the desired path, yaw angle deviation with respect to ψdes(t), desired yaw angle obtained

Table 1. Parameters of vehicle model for path-following control.

Symbol Description Value[units]

Vx vehicle speed 20 [m/s]

m vehicle mass 1270 [kg]

a distance from center to front axis 1.015 [m]

b distance from center to rear axis 1.895 [m]

Iz vehicle yaw inertia 1536.7 [kg �m2]

Cf front tire cornering stiffness

Cr rear tire cornering stiffness

This table identifies and quantifies the path-following control model parameters. The vehicle is assumed to move at a

constant speed of 20 m/s, and other parameter values refer to a vehicle model in CarSim(C-Class Hatchback 2017).

However, the values of front and rear tire cornering stiffness are not defined explicitly in CarSim. Therefore, these

values are calculated in this paper using a function of the tire slip angle and the lateral force on the tire.

https://doi.org/10.1371/journal.pone.0194110.t001
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from the desired path; front steering wheel angle, and road bank angle, respectively. The desired

yaw rate is _cdesðtÞ ¼
Vx
RðtÞ, where R is a radius of the desired path, and g is the gravitational

acceleration.

A state-space representation of Eq (1), neglecting the influence of road bank angle, can be

expressed as follows:

_xðtÞ ¼ AxðtÞ þ B1u1ðtÞ þ B2u2ðtÞ;

yðtÞ ¼ CxðtÞ;

where

xðtÞ ¼ ½e1ðtÞ _e1ðtÞ e2ðtÞ _e2ðtÞ�
0
; u1ðtÞ ¼ dðtÞ; u2ðtÞ ¼ _ desðtÞ;

A ¼

0 1 0 0

0 �
2Cfþ2Cr

mVx

2Cfþ2Cr
m �

2aCf � 2bCr
mVx

0 0 0 1

0 �
2aCf � 2bCr

IzzVx

2aCf � 2bCr
Izz

�
2a2Cfþ2b2Cr

IzzVx

2

6
6
6
6
4

3

7
7
7
7
5
; B1 ¼

0
2Cf
m

0
2aCf
Izz

2

6
6
6
6
4

3

7
7
7
7
5
;

B2 ¼

0

�
2aCf � 2bCr

mVx
� Vx

0

�
2a2Cfþ2b2Cr

IzzVx

2

6
6
6
6
4

3

7
7
7
7
5
; C ¼ 1 0 0 0 �: ð2Þ½

The second input u2(t) is defined by the desired path as described in Fig 1. The control

objective is to converge the output, y(t), to zero by the steering wheel angle, δ(t); i.e., the lateral

Fig 2. Tire cornering stiffness. (A) Corresponding lateral tire force, Fy, as a function of the slip angle of the tire, α with different vertical tire loads. (B) the initial slope of

the function (red line) when the vertical tire load is 3187.16 N, considering the vehicle mass, i.e., 967 N/deg or 55405 N/rad, which are both values of tire cornering

stiffness Cr and Cf, respectively.

https://doi.org/10.1371/journal.pone.0194110.g002
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position error of the vehicle with respect to the desired path converges to zero. In this paper, a

zero-order hold method is applied with a sampling time of 0.01 s to employ Eq (2) in an

explicit MPC scheme.

Explicit model predictive control

In this section, the formulation of a basic MPC scheme and an introduction of explicit MPC

are given.

Formulation of model predictive control

This subsection explains a concept and a formulation of MPC.

MPC [20] has been employed as a key optimal control scheme to guarantee the robustness

and fulfilment of such complex constraints [21]. Basically, at each sampling time, MPC solves

an open-loop optimization problem with respect to the constraints [22]. The open-loop opti-

mization problem can be defined as follows:

min
U≜ut ;:::;utþNu � 1

fJðU; xðtÞ ¼
XNy � 1

k¼0

½x0tþkjtQxtþkjt þ u0tþkRutþk þ ðytþk � yreftþkÞ
0QRðytþk � yreftþkÞ� þ x0tþNy jt

PxtþNy jt
g;

s:t: xtjt ¼ xðtÞ;

xtþkþ1jt ¼ Adxtþkjt þ Bdutþk; k >= 0;

ytþkjt ¼ Cdxtþkjt;

umin <= utþkjt <= umax; k ¼ 0; 1; :::;Nu;

xmin <= xtþkjt <= xmax; k ¼ 0; 1; :::;Ny;

utþk ¼ Kxtþkjt; Nu <= k < Ny;

ð3Þ

where Ad, Bd, and Cd are the discrete-time versions of the system, input, and output matrices

in Eq (2), respectively, and k is the time index, i.e., xðtÞ 2 Rn, and uðtÞ 2 Rm. The notation xk|t

represents the value of x, which is predicted to be k steps ahead of t. Q, R, P, and QR are the

weighting matrices for the state, input, and terminal state, respectively, at k = Ny; moreover,

the output with the corresponding dimensions and P can be obtained as the solution of the dis-

crete-time algebraic Riccati equation as follows:

P ¼ A0dPAd � A0dPBdK þ Q;

K ¼ ðB0dPBd þ RÞ� 1B0dPAd;
ð4Þ

where K is the state-feedback gain matrix. It is assumed that P ≽ 0, Q ¼ Q0 ≽ 0, and

R ¼ R0 ≽ 0; moreover, Ny and Nu are the prediction horizon and the input horizon, respec-

tively. For the MPC controller, Ny must be longer than or equal to Nu [23]. The constraints in

Eq (3) are imposed on the state and the input along Ny and Nu, respectively.

By solving Eq (3), a sequence of optimal input vectors U is obtained, and in the period of Nu

� k< Ny, the MPC controller selects K as the optimal feedback gain matrix. Among the calcu-

lated input vectors, only the first input ut is selected as the control action to the system, and the

other input vectors are discarded. Then, the same task is repeated over a shifted horizon.

Because ut is the optimal control action at t = 0, which minimizes a cost function with respect

to the prediction of the system along Ny, MPC can predict future events of the system and fulfil

constraints such as the ones mentioned in Eq (3).

Analysis of explicit model predictive control for path-following control
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Despite the advantages of MPC, repeated optimization at each sampling instance leads to

considerable computational complexity; consequently, the range of possible target applications

of MPC has been limited to relatively small and/or slow problems. To overcome this drawback,

a new MPC-based approach has been suggested in [7]; this approach can solve the optimiza-

tion problem offline by reformulating the problem as a multi-parametric quadratic program

(mp-QP). A brief explanation of this approach is provided in the next section.

Summary of explicit model predictive control

This subsection provides a summary of explicit MPC, and how optimization can be imple-

mented offline. The main concept of explicit MPC is solving Eq (3) offline while sustaining the

performance of MPC to expand its range of target applications to relatively larger or faster

problems. Basically, an explicit MPC controller generates so-called critical regions, as piecewise

affine functions of x(t), where a unique sequence of MPC feedback laws are defined in each

critical region. Thereby, the controller explicitly selects a critical region that minimizes the

cost function of mp-QP, which is transformed from the online optimization problem in

Eq (3).

The prediction equations of the state vector xðtÞð2 RnNyÞ can be derived as follows:

xðtÞ ¼ YxðtÞ þ LuðtÞ;

where

xðtÞ ¼

xðkþ 1jkÞ

..

.

xðkþ NyjkÞ

2

6
6
4

3

7
7
5;uðtÞ ¼

uðkjkÞ

..

.

uðkþ Ny � 1jkÞ

2

6
6
4

3

7
7
5;

Y ¼

Ad

..

.

ANy
d

2

6
6
4

3

7
7
5; L ¼

Bd 0 � � � 0

AdBd Bd � � � 0

..

. ..
. . .

. ..
.

ANy � 1

d Bd ANy � 2

d Bd � � � Bd

2

6
6
6
6
6
4

3

7
7
7
7
7
5

;

ð5Þ

where uðtÞ 2 RmNu . Using Eqs (5) and (3) can be reformulated as follows:

VðxðtÞÞ ¼
1

2
x0ðtÞGxðtÞ þmin

U

1

2
uðtÞ0HuðtÞ þ x0ðtÞFuðtÞ

� �

;

s:t: AcuðtÞ <= b0 þ BcxðtÞ;
where

H ¼ L
0 ~QLþ ~R; F ¼ L

0 ~QY; G ¼ Y
0 ~QYþ Q;

~Q ¼

Q
. .

.

Q
P

2

6
6
6
4

3

7
7
7
5
; ~R ¼

R
. .

.

R

2

4

3

5;

Ac ¼
Li

� Li

" #

; i ¼ 1; :::;Ny; b0 ¼
xmax

� xmin

" #

; Bc ¼
� Ai

d

Ai
d

" #

; i ¼ 1; :::;Ny:

ð6Þ
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In Eq (6), Λi indicates the ith row of Λ, ~Q 2 RnNy�nNy ; ~R 2 RmNy�mNy , and H, F, and G can be

calculated offline.

By defining z ≜ uðtÞ þH � 1F0, the re-written optimization problem in Eq (6) can be

expressed as a mp-QP problem as follows [7]:

VzðxÞ ¼ min
z

1

2
z0Hz

s:t: Acz <= b0 þ BzxðtÞ;
ð7Þ

where VzðxÞ ¼ VðxðtÞÞ � 1

2
x0ðG � FH� 1F0Þx and Bz ≜ Bc þ GH� 1F0. In Eq (7), z, which is

obtained using the Karuch-Kuhn-Tucker optimality conditions [24], is a piecewise affine func-

tion of the state vector x(t). The inequality constraint in Eq (7) is a polytope; therefore, the gen-

erated critical regions are polytopes as well.

In this paper, we use the POP toolbox developed by Texas A&M University to design the

proposed explicit MPC controller. A parametrized vector, denoted as θ, can be defined with

respect to both/either the state vector, and the input vector or output vector (the reader can

refer to [25] for more details). Using the POP solver, the inequality constraint in Eq (7) can be

defined as follows:

y 2 RqjCRAy � CRb; ð8Þ

where q is the number of parameters. The critical regions are segmented based on Eq (8) by

generating multiple of constraints h for each critical region. CR01 is the first and the largest

critical region, and the remainder of the critical regions CRrest can be defined using the POP

solver as follows:

CRjþ1 ¼ fCRl
A � CRl

bg; l ¼ 1; :::; h; j ¼ 1; :::;NCR � 1;

where

h ¼ 1 � 4ðnþ pþ qÞ:

ð9Þ

In Eq (9), n, NCR, and p are the number of continuous variables, critical regions, and binary

variables, respectively.

Fig 3 shows an example of the generated critical regions and the cost function of the param-

eter space using the POP solver, where

yðtÞ ≜ xðtÞ; u2ðtÞ; u2ðt þ 1Þ; u2ðt þ 2Þ; yspðt þ Ny � 1Þ �
�

. u2(t) and ysp(t + Ny − 1) indicate

the predicted second inputs and the set point of the output at time t during the prediction

along Ny, respectively, where the value of u2(t) can be obtained from the geometric informa-

tion of the desired path. In Fig 3, it is assumed that Ny = 3 and Nu = 2; correspondingly, a total

of 97 critical regions are generated. In addition, x1(t) and x2(t) vary with the constraint on each

state, whereas other values are fixed to specific values observed in the simulation. A unique

sequence of MPC feedback laws is imposed in each critical region, and the controller chooses a

critical region considering the value of θ(t), which minimizes the cost function. For example, if

x1(t) and x2(t) are zero in Fig 3, the selected critical region is CR001 and the feedback law is

u1(t) = −Kθ(t), where K ¼ � 69:00 � 2:73 � 55:09 0:26 0:30 0:05 � 0:08 0:36 �½ . The number

of MPC feedback laws are identical to the range of Nu in a MPC scheme, and only the first

MPC feedback law is employed for the control action to the system. Therefore, explicit MPC

does not require any online optimization owing to the critical regions, and this significantly

reduces the computational complexity of MPC.
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Controller design

This section presents a formulation of the target path and thedesign of an explicit MPC con-

troller; for comparison, an LQR and an MPC controller are designed as well.

Desired path

In this subsection, we study the desired path, as shown in Fig 1 according to its four parts.

The first part of the desired path is a 200-m-long straight part, wherein we intend to show

the ability of the proposed controller to fulfil constraints that will be defined in the next section

(explicit MPC controller design) by setting the starting point such that is deviated from the

desired path. The result of doing so is provied in the result section. The second and the third

parts are curve roads with a constant radius of curvature. The radius of second part, as shwon

in Fig 1, is 200 m, and that of the third is 100 m. In these two curved parts, the desired yaw rate

is defined as follows [19]:

_cdes ¼
Vx

R
¼ kVx; ð10Þ

Fig 3. Critical regions. An example of critical regions and the associated cost function are illustrated in this figure. In this figure,

yðtÞ ≜ ½xðtÞ; u2ðtÞ; u2ðt þ 1Þ; u2ðt þ 2Þ; yspðt þ Ny � 1Þ�, where x(t), u2(t), and ysp(t) are the state vector, second input shown in Eq (2), and set point of the output

within the prediction horizon Ny, respectively. The proposed controller predicts the second input, which can be obtained from the desired path, along Ny.

https://doi.org/10.1371/journal.pone.0194110.g003
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where k is the curvature of the road. In Eq (10), R(t) is the inverse of k(t); therefore, in the sec-

ond and third parts, the desired yaw rates are -0.1 rad/s and 0.2 rad/s, respectively.

The last part is a clothoid. A clothoid is mainly used to translate the type of road, e.g., from

a circular load to a straight road. In the clothoid part, the curvature shown in Eq (10) is a linear

function of the length from the initial position of the curve. The equation of a clothoid can be

defined in terms of the Fresnel integral [26] as follows:

xglobalðtÞ

yglobalðtÞ

2

4

3

5 ¼ a
CðtÞ

SðtÞ

" #

;

where

CðtÞ ¼
Z t

0

cos
pu2

2

� �

du and SðtÞ ¼
Z t

0

sin
pu2

2

� �

du:

ð11Þ

In Eq (11), xglobal(t), yglobal(t), and a are the global X coordinate, the global Y coordinate in

Fig 1, and a scaling factor, and the parameter t is positive. The curvature of the initial point

and end point of the clothoid part are 0.01, which is the curvature of the third part, and zero,

respectively. In a clothoid curve, the curvature is defined as a linear function of time as

kðtÞ ¼ p

a t, where a = 8372.3.

Explicit MPC controller design

This subsection explains the design of the explicit MPC controller such as the controller struc-

ture; the determination of weighting matrices Q, R, QR; and the set of the constraints in Eq (3).

Moreover, the simulation results for the controller with variations in the prediction horizon

and control horizon in the MPC optimization problem are provided in this section.

Fig 4 shows the structure of the explicit MPC controller using a vehicle model from CarSim

(C-Class Hatchback 2017). The desired yaw rate _cdesðtÞ can be obtained using Eq (10) along

with the geometric information of the desired path. The desired output ydes(t) and the set point

of the output ysp(t) in the horizon Ny are fixed to zero because y(t) in Eq (2) represents the lat-

eral deviation from the desired path. The value of the state vector x(t) is observed from the

vehicle model in CarSim. Because this vehicle model reflects more realistic physical character-

istics, which cannot be considered in Eq (2), which has only two degrees-of-freedom (DOF), a

relatively more reliable demonstration of the proposed controller can be established.

For comparison of the proposed controller with other controllers, the constraints on the

state vector, which consists of the error variables e1(t), e2(t) and the deviations of both e1(t) and

e2(t) are defined as follows:

� 1
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� 572:96
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This set of constraints considers the time when the starting position of the vehicle deviates

from the desired path. In simulation results, the proposed controller shows the ability to fulfil

these constraints to a greater extent compared with other optimization controllers.

Analysis of explicit model predictive control for path-following control

PLOS ONE | https://doi.org/10.1371/journal.pone.0194110 March 13, 2018 10 / 19

https://doi.org/10.1371/journal.pone.0194110


The weighting matrices Q, R, and QR of the proposed controller are selected as follows:

Q ¼

q1 0 0 0

0 q2 0 0

0 0 q3 0

0 0 0 q4

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

;R ¼ bI;QR ¼ cI; ð13Þ

where q1, q2, q3, and q4, which are elements of the matrix Q, are the weighting factors for each

state, and b and c are the weighting factors for the input and output errors, respectively. A rela-

tively large weighting factor acts as a hard constraint on the state, whereas a relatively small

weighting factor acts as a soft constraint on the state. Fig 5 shows the variations in each element

in the matrix Q, where Fig 5A and 5B express the steering wheel angle δ(t) and the correspond-

ing lateral position error e1(t), respectively, according to different values of q1 and q2. It can be

proved that for position and angle error control, a relatively large weighting factor, which

serves as a hard constraint, needs to be assigned to the position error variable, and a relatively

small weighting factor, which serves as a soft constraint, is recommended for the derivative of

the position error variable. However, it can be found in Fig 5C that a vary large weighting fac-

tor of the lateral position error leads to an increase in the maximum angle and a rapid changes

in the steering wheel angle, which correspondingly increases the lateral acceleration of the

sprung mass of the vehicle. It is generally accepted that a big sprung mass acceleration level

causes deterioration of ride comfort [27]. In terms of the relationship between weighting

matrices and performance, the weighting factors in Eq (13) are set to q1 = 7000, q2 = 1, q3 =

20000, q4 = 1, b = 1, and c = 100.

In [23], it is proved that for predictive controllers, the length of a prediction horizon must

be longer than or equal to that of an input horizon. The lengths of the prediction horizon Ny

and the input horizon Nu are analyzed in this section.

Fig 4. Explicit MPC controller structure. Structure of an explicit MPC controller for path-following control constructed using a vehicle model from CarSim. Based on

the values of the parameter vector θ, the block “critical regions” selects a critical region CRi; then, the block “MPC feedback law” calculates the control action by applying

the first MPC feedback law to the selected critical region CRi.

https://doi.org/10.1371/journal.pone.0194110.g004
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Fig 6 shows the optimal steering wheel angle and the generated lateral position error of the

proposed controller, when Ny is varied. In Fig 6, Nc is fixed to 3 and Ny is varied to 7, 13, and

23. As the simulation results show, the change in the steering wheel angle occurs earlier as Ny

increases, which reduces the lateral position error. Similarly, the ability of the explicit MPC

controller to anticipate future events can be improved if the length of Ny is increased. However,

it is found that the steering wheel angular velocity increases as Ny increases. This means that

setting a vary long prediction horizon to reduce the lateral error will deteriorate ride comfort.

Therefore, considering the two results from Fig 6, the prediction horizon and the input hori-

zon were set to Ny = 11 and Nc = 3.

Fig 5. Determination of weighting factors for the state. (A) and (B) The effects of q1 and q2, respectively, which are

weighting factors of the state, as given in Eq (13), where e1(t) indicates the lateral position error of the vehicle with

respect to the desired path. It is demonstrated that for achieving path following control with error variables, the

weighting factor of the position error must be large, whereas the weighting factor of the position error derivative must

be small. (C) The lateral acceleration of the sprung mass with different values of q1. As ride comfort is typically

evaluated according to the sprung mass of the vehicle, this figure shows a very large q1 deteriorates ride comfort.

https://doi.org/10.1371/journal.pone.0194110.g005
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Results

In this section, the performance of the proposed controller is compared with those of the LQR

controller and the MPC controller. The actual driving simulation results obtained using Car-

Sim are addressed as well.

In the design of the LQR controller and the MPC controller, the weighting matrices used

are the same as those used in case of the proposed explicit MPC controller. The state feedback

gain K of the LQR controller can be obtained using the algebraic Riccati equation as follows

[28]: Therefore, K is the same as shown in Eq (4). The MPC controller solves the optimization

problem Eq (3) online considering the constraints given in Eq (12).

Fig 6. Simulation results with different ranges of prediction horizon. This figure shows the simulation results when the range of the prediction horizon Ny is varied

while the input horizon Nu is fixed at 3. As Ny increases, the input dynamics, i.e., the steering wheel angle, changes in advance; this consequently reduces the lateral

position error because a longer Ny improves the prediction ability of the controller. However, we found that an extremely long Ny leads to an increase in the steering wheel

angular velocity, which deteriorates ride comfort.

https://doi.org/10.1371/journal.pone.0194110.g006

Analysis of explicit model predictive control for path-following control

PLOS ONE | https://doi.org/10.1371/journal.pone.0194110 March 13, 2018 13 / 19

https://doi.org/10.1371/journal.pone.0194110.g006
https://doi.org/10.1371/journal.pone.0194110


Fig 7 shows the simulation results of two different LQR controllers, the MPC controller,

and the explicit MPC controller. It is assumed that the vehicle starts with 1 m of lateral position

error, and these controllers calculate the optimal steering angle to lead the vehicle along the

desired path. In the case of LQR1, the weighting matrices Q, R, P, and QR are the same as those

in the explicit MPC controller design, and they cannot fulfil the constraints given in Eq (12).

Therefore, LQR2 was additionally designed to confine the dynamics of the states to the con-

straints by adjusting the weighting matrices, specifically, to reduce q1 in the weighting matrix

Q. Even though the states change within the constraints, the steering wheel angular velocity at

t = 0 remains too high, which degrades ride comfort. Moreover, adjustment of the matrices

deteriorates the tracking ability to converge the error variables to zero. However, the MPC

controller, designed using YALMIP toolbox, and the explicit MPC controller, designed using

the POP solver, induce the optimal input while fulfilling the constraints. However, the main

difference between the MPC controller and the explicit MPC controller is in terms of the time

required to solve the optimization problem. In the first second of the simulation, the MPC

controller required 35.71 s to solve optimization problems online, whereas the explicit MPC

Fig 7. Comparison of optimization controllers. This figure shows the dynamics of the states of the LQR controllers, MPC controller, and explicit MPC controller. It is

proved that LQR1 cannot fulfil the constraints as set Eq (12) and that the MPC controller consumes more time than the explicit MPC controller in the first 100 simulation

runs (0.51 s in the case of the explicit MPC controller and 35.71 s in the case of the MPC controller). Moreover, LQR2 is designed to limit the maximum values of the state

dynamics in the constraints by adjusting the weighting matrices; nevertheless, a high steering wheel angular velocity, which reduces ride comfort, persist.

https://doi.org/10.1371/journal.pone.0194110.g007
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controller required only 0.51 s owing to its use of critical regions to explicitly choose the opti-

mal feedback law.

Fig 8 shows the paths of the LQR controllers, explicit MPC controller, and driver model

from CarSim. The objective of path-following in this simulation is to maintain 2 m of lateral

distance from the center line of the desired path. As shown in the figure, the path of the LQR

controller causes a positional deviation from the desired path, and this deviation is larger than

that in case of the explicit MPC controller. Conversely, the explicit MPC controller is capable

of path-following because its path is close to the that of the driver model.

The dynamics of the steering wheel angle, yaw rate, and lateral position error are shown in

Fig 9. The dynamics of the three states are bounded in the permitted ranges, which are set

using the constraints Eq (12), whereas the range of the lateral position error of the LQR con-

troller is out of the boundary set. Based on these simulation results, the state-space representa-

tion expressed in Eq (2) and the tire cornering stiffness value determined from Fig 2 can be

verified because CarSim can handle such complex dynamics of vehicles, which cannot be con-

sidered in Eq (2).

Additionally, simulations, were performed by varying the vehicle speed to 18 m/s, 20 m/s,

22 m/s, and 24 m/s, and the results are shown in Fig 10. As can be explained from Fig 10, the

positional deviation from the desired path increases as the vehicle speed increases. This prob-

lem can be handled by increasing the weighing factor of the state of the lateral position error,

as proved in Fig 5A, as long as the corresponding increase in steering wheel angle dose not

severely degrade ride comfort.

Fig 8. Paths of controllers and driver model. This figure shows the paths of the LQR controller, explicit MPC controller, and driver model. It can be observed that in the

case of the LQR controller, the deviation from the center line of the desired path is larger than that in the case of the explicit MPC controller, whereas path-following

control performed using the explicit MPC controller is similar to that performed using the driver model in CarSim. The details of the error variables are shown in Fig 9.

https://doi.org/10.1371/journal.pone.0194110.g008
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Conclusion

In this study, an explicit MPC controller for path-following control was designed and analyzed

using MATALB/Simulink and CarSim. Explicit MPC has been proposed to reduce the compu-

tational complexity caused by the online optimization of MPC. Explicit MPC generates critical

regions, by using a multi-parametric quadratic programming technique, so that the controller

can explicitly obtain the optimal feedback gain. The explicit MPC scheme, which is a method

of determining the weighting matrices, and the range of the prediction horizon and the input

horizon for path-following control were described in this paper. The tracking ability and fulfil-

ment of the constraints of explicit MPC were proved comparing its performance with those of

other controllers.

Fig 9. Simulation results for optimization controllers and the driver model. Simulation results for the path-following controllers obtained using the LQR and explicit

MPC methods as well as those obtained using the driver model are shown in this figure. Both controllers use the same weighting matrices to solve the optimization

problem. From the results of the error variables, in particular, from the result of the lateral position error, the superiority of the explicit MPC controller over the LQR

controller is demonstrated.

https://doi.org/10.1371/journal.pone.0194110.g009
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In the future works, we aim to design an explicit MPC controller for path-following control

where a vehicle model considers road profile excitation. For example, a vehicle model can be

combined with a three-dimensional (3-D) road profile excitation, which has been presented in

[29]. One of the main contributions of this paper is to prove the performance of explicit MPC

controllers, which can reduce the computational complexity of MPC so that the MPC scheme

can be applied for relatively faster and/or smaller problems. For this purpose, we intend to

design an explicit MPC controller on Field Programmable Gate Array(FPGA) using VHSIC

Hardware Description Language(VHDL) for the future work. FPGA is based around a matrix

of configurable logic blocks, which are connected via programmable interconnects. VHDL is a

hardware language used for simulation of electronic designs such as FPGA. Because the MPC-

based controllers needs a relatively huge computational effort, most of MPC controllers are

designed on MCUs. Compared with MCUs, however, FPGA features the lower development

coasts and lower power consumption; especially, by using high-speed CMOS technology, this

device can handle relatively faster or smaller problems than MCUs generally do [30]. However,

it has been known that FPGA is unable to complete a complex design such as the online opti-

mization problem in the MPC scheme. Regarding this issue, the explicit MPC scheme only

needs simple mathematical calculations to choose a critical region, which means FPGA can be

used to design explicit MPC controllers. We ultimately aim to design explicit MPC controllers

for not only path-following control but also UAVs or other automotive systems such as electric

vehicle powertrain and braking control systems [31–34]. The important characteristics of con-

trollers for both UAVs and automotive systems are the low power consumption and the fast

response to the control action. We intend to prove that explicit MPC controllers can be applied

for both of the target applications while satisfying these two characteristics by using FPGA.
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Fig 10. Lateral position errors at different vehicle speeds. This figure shows the lateral position error that occurred

when the vehicle speed was 18 m/s, 20 m/s, 22 m/s, and 24 m/s. The position error increases as the vehicle speed

increases.

https://doi.org/10.1371/journal.pone.0194110.g010
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